PoE technology

Home

PoE technology

  • Does a PoE switch always send power?
    Jul 12, 2024
    Power over Ethernet (PoE) technology has revolutionized network infrastructure by combining data and power transmission over a single Ethernet cable. However, a PoE switch does not always supply power to connected devices. Instead, it uses an intelligent process to determine if a connected device requires power and is PoE compatible.   How PoE switches work PoE switches integrate power sourcing equipment (PSE) functionality, enabling them to power a wide range of devices such as IP cameras, VoIP phones, and wireless access points. Key components of a PoE switch include: Detection Mechanism: Low-voltage signal: When a device is connected to a PoE port, the switch sends a low-voltage signal to detect if the device is PoE compatible. Only devices that respond appropriately (compliant with IEEE 802.3af/at standards) are powered on.   Power Classification: Power Requirements: The switch evaluates the power requirements of connected devices. For example, devices may be classified into different power classes, from Class 0 (default) to Class 4 (for PoE+ devices), to allocate the appropriate power.   Power Delivery: Controlled Powering: Once a device is verified as PoE-compatible and its power requirements are determined, the switch provides the necessary power. This controlled powering ensures efficient use of energy and device safety.   Situations where a PoE switch does not deliver power Non-PoE devices: Devices that do not support the PoE standard will not draw power from the PoE switch. A detection mechanism ensures that only PoE-compatible devices receive power, preventing damage to non-PoE devices. Power Budget Limitation: PoE switches have a maximum power budget that cannot be exceeded. For example, a switch with a power budget of 65W can power multiple devices, but if the cumulative power requirements exceed this budget, some devices may not receive power.   Extended Mode Feature: Some PoE switches have an extended mode setting, such as the SP5200-4PFE2FE PoE switch that allows power delivery over longer distances (up to 250 meters) while managing power distribution. In this mode, power distribution is strictly controlled to ensure that all devices within range receive adequate power.   Benefits of Selective Powering Energy Efficiency: By supplying power only to necessary devices, PoE switches help reduce overall energy consumption, thereby saving costs and reducing carbon footprint.   Security: The detection and classification process protects the switch and connected devices from potential damage caused by inappropriate power levels.   Network Flexibility: PoE technology allows for flexible placement of devices such as IP cameras and access points without the need for nearby power outlets, simplifying network installation and expansion.   PoE switches are designed to intelligently manage power delivery, ensuring that only compatible devices receive the power they need. This not only improves the efficiency and security of network deployment, but also provides flexibility and scalability for applications such as IP cameras, VoIP phones, wireless access points (WAPs), network switches and routers. By understanding the detection mechanism, power classification, and controlled power delivery of PoE technology, network administrators can make informed decisions to deploy PoE switches to optimize their network infrastructure.
    Read More
  • How do PoE switches handle data and power simultaneously?
    Oct 20, 2022
      PoE (Power over Ethernet) switches are designed to handle both data and power transmission simultaneously over the same Ethernet cable. Here’s a breakdown of how this is achieved:   1. Ethernet Cable Structure --- Standard Ethernet cables, like Cat5e, Cat6, or Cat6a, consist of eight copper wires twisted into four pairs. For standard data transmission, only two pairs (four wires) are needed. PoE technology takes advantage of the unused pairs to transmit power, or in some configurations, sends both power and data over the same pairs.   2. Power Injection PoE switches inject power into the Ethernet cable alongside the data signals. Depending on the PoE standard, the power is injected in one of two ways: --- Mode A (Phantom Powering): Power is transmitted along the same pairs that carry data (pins 1-2 and 3-6). --- Mode B (Spare Pair Powering): Power is transmitted on the unused pairs (pins 4-5 and 7-8) in 10/100 Mbps Ethernet. In both cases, the power and data signals are able to coexist without interference, thanks to the separation of their frequencies—power is transmitted as a low-frequency DC current, while data is transmitted as high-frequency signals.   3. Power and Data Separation at the Device --- At the receiving end (the powered device, or PD), a PoE splitter inside the device separates the power from the data. The Ethernet controller in the device handles the data transmission, while the power supply circuit uses the DC voltage from the Ethernet cable to power the device.   4. Negotiation (Power Classification) --- PoE switches use a process called power classification to detect whether a connected device is PoE-compatible and determine how much power it needs. This is done using a handshake protocol known as LLDP (Link Layer Discovery Protocol) or a simpler detection mechanism where the switch sends a small voltage through the cable to identify the device's power requirements. --- Once the power needs are identified, the switch adjusts the power output accordingly, ensuring the appropriate amount of power is supplied without disrupting data flow.   5. PoE Standards Different PoE standards allow for varying amounts of power to be delivered: --- IEEE 802.3af (PoE): Up to 15.4W per port. --- IEEE 802.3at (PoE+): Up to 25.5W per port. --- IEEE 802.3bt (PoE++): Up to 60W (Type 3) or 100W (Type 4) per port.   6. Power Budget Management --- A PoE switch manages its total power budget, distributing available power to all connected devices. It monitors how much power each device is drawing and dynamically adjusts to ensure all connected devices receive the power they need while maintaining data transmission.   7. Data Integrity --- PoE switches are designed to maintain data integrity, ensuring that power transmission doesn’t interfere with data signals. This is achieved by using precise filtering techniques and voltage regulation to prevent power-related noise from affecting data communication.     In summary, PoE switches use intelligent power management and frequency separation techniques to transmit data and power simultaneously over the same Ethernet cable, ensuring efficient, reliable operation for powered devices without data disruption.    
    Read More
  • What is a Gigabit PoE switch?
    Nov 18, 2023
      A Gigabit PoE switch is a type of network switch that supports Gigabit Ethernet speeds (1 Gbps per port) and provides Power over Ethernet (PoE) functionality. This means it can transmit both data and electrical power over the same Ethernet cable to compatible devices, such as IP cameras, wireless access points, VoIP phones, and other network devices.   Here’s a breakdown of its key features: 1.Gigabit Ethernet: Each port on the switch supports speeds up to 1,000 Mbps, which allows for fast data transfer rates, suitable for high-bandwidth applications like video streaming, cloud computing, and large data transfers. 2.Power over Ethernet (PoE): PoE technology enables the switch to deliver electrical power over Ethernet cables to connected devices. This eliminates the need for separate power supplies and wiring, simplifying installation, particularly for devices located in areas without easy access to power outlets. 3.Efficiency and Simplicity: By combining data and power transmission into one, Gigabit PoE switches reduce cabling complexity and infrastructure costs, making them ideal for IP surveillance systems, smart buildings, IoT deployments, and other business or industrial applications.     Overall, a Gigabit PoE switch is a versatile and efficient solution for powering and connecting network devices in environments where speed, reliability, and simplified deployment are essential.    
    Read More
  • What is PoE for wireless backhaul?
    Dec 18, 2023
      PoE for wireless backhaul refers to the use of Power over Ethernet (PoE) technology to supply both power and data connectivity to wireless backhaul equipment through a single Ethernet cable.   Key Concepts: PoE (Power over Ethernet): PoE technology allows Ethernet cables to carry both electrical power and data. This is commonly used for devices like IP cameras, VoIP phones, and wireless access points, where both power and data transmission are needed, but running separate power lines would be inconvenient or expensive. Wireless Backhaul: Wireless backhaul refers to the process of transmitting data from one network location to another, typically over long distances, using wireless communication. It is often used in telecommunications to connect remote cell towers, wireless access points, or other network nodes to the core network.   How PoE is Used in Wireless Backhaul: --- When PoE is applied to wireless backhaul, it simplifies installation by allowing power to be delivered directly through the Ethernet cable to the wireless backhaul device (such as a point-to-point or point-to-multipoint wireless radio). This eliminates the need for a separate power source, making the deployment more efficient and cost-effective.     Benefits: Simplified Installation: Only one cable is required for both power and data, reducing the complexity of network infrastructure. Cost Savings: Reduces the need for additional power cabling or separate power sources. Flexibility: Wireless backhaul devices can be placed in hard-to-reach areas, such as rooftops or towers, where power outlets might not be available.     PoE is often used in applications like rural broadband connectivity, urban wireless coverage expansion, and in scenarios where physical infrastructure is difficult to maintain.    
    Read More
  • Why is PoE Voltage So High?
    Jan 10, 2025
      Power over Ethernet (PoE) technology has transformed how networks are deployed by allowing devices to receive both power and data through a single Ethernet cable. One question often raised is: why does PoE use such high voltage levels compared to traditional low-voltage systems?    Understanding PoE Voltage Levels   PoE technology is designed to supply power to various network devices, such as IP cameras, wireless access points, and VoIP phones, through Ethernet cables. Depending on the specific PoE standard, the voltage provided by PoE switches ranges between 44V and 57V, with the most common level being around 48V. This is significantly higher than the typical 12V or 24V used in other low-voltage systems.   But why exactly is the PoE voltage so high? The answer lies in a combination of factors, including power efficiency, cable length, and compatibility with different devices. 1. High Voltage Reduces Power Loss   One of the primary reasons for using higher voltage in PoE systems is to minimize power loss over long cable runs. Electrical power loss occurs due to the resistance of the cable, which is proportional to the square of the current. By increasing the voltage and reducing the current, PoE systems can transmit power more efficiently over distances up to 100 meters (328 feet) without significant energy loss.   For example, consider a network using Gigabit PoE switches to power multiple high-wattage devices. Lower voltage would result in higher current, leading to excessive power dissipation as heat and reduced overall efficiency. With higher voltage, the current remains low, keeping power loss manageable and ensuring sufficient power delivery to all connected devices. 2. Ensuring Device Compatibility and Safety   PoE systems are designed to power a wide range of devices with varying power requirements. Higher voltage provides greater flexibility in meeting the needs of different devices, from low-power VoIP phones to high-power outdoor security cameras. Using a standard voltage of around 48V ensures compatibility across all PoE devices, regardless of power class.   Moreover, despite the high voltage, PoE technology is engineered with safety in mind. Modern managed PoE switches incorporate sophisticated detection mechanisms to ensure that only PoE-compatible devices receive power. Before supplying voltage, the switch performs a handshake with the connected device to determine if it can safely accept PoE power. If a non-PoE device is connected, the switch withholds power, protecting both the device and the network infrastructure. 3. Supporting Higher Power Devices   As network devices become more advanced, their power requirements are increasing. The latest PoE standard, IEEE 802.3bt, known as PoE++, can deliver up to 90W per port, enabling it to power more demanding devices like smart lighting systems, interactive kiosks, and point-of-sale terminals. High voltage is essential to supply this level of power without exceeding the current capacity of standard Ethernet cables.   For businesses deploying such high-power devices, using high-quality industrial PoE switches is critical. These switches are specifically designed to handle the increased power demands while maintaining stable data transmission and minimizing heat generation. Safety Concerns with High PoE Voltage   Although PoE uses higher voltage than traditional low-voltage systems, it is still considered safe for both installation and operation. The maximum voltage used by PoE systems, 57V, is below the 60V safety threshold defined by international electrical standards. This means that PoE installations do not require special high-voltage handling procedures, making them a convenient choice for network deployments in various environments.   Furthermore, Ethernet cables used in PoE networks are well-insulated and shielded, reducing the risk of accidental contact with live conductors. Combined with the built-in safety features of PoE switches, this ensures that PoE systems remain safe even in large-scale deployments.Common Applications Requiring High PoE Voltage   High voltage PoE systems are widely used in industries where devices need to be powered over long distances or where high-power devices are required. Key applications include:       Surveillance Systems: PoE-powered IP cameras, especially those with features like night vision and pan-tilt-zoom, require higher power levels to function effectively.     Wireless Networks: High-performance wireless access points deployed in enterprise environments often need PoE++ to deliver both power and high-speed data.     Smart Buildings: PoE technology is increasingly used to power smart lighting, HVAC controllers, and other IoT devices in modern smart buildings.   How to Choose the Right PoE Switch for Your Needs?   When selecting a PoE switch, businesses should evaluate the total power budget, port requirements, and supported PoE standard. For long-distance power transmission or high-power devices, Gigabit PoE switches with PoE++ support are recommended. Advanced management features also provide better power control and enhance network reliability. Why Choose BENCHU GROUP for PoE Solutions?   As a trusted supplier of power solutions, BENCHU GROUP offers a comprehensive range of PoE switches tailored to various business needs. Whether you require a compact switch for an office or a high-power industrial model, we have you covered.   Key features include:       High power capacity for PoE, PoE+, and PoE++ devices     Built-in safety mechanisms for secure power delivery     Durability for demanding environments     Energy efficiency to reduce costs   Contact us today to partner with BENCHU GROUP to build a smarter, more reliable network!
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact Us