PoE technology

Home

PoE technology

  • Does a PoE switch always send power?
    Jul 12, 2024
    Power over Ethernet (PoE) technology has revolutionized network infrastructure by combining data and power transmission over a single Ethernet cable. However, a PoE switch does not always supply power to connected devices. Instead, it uses an intelligent process to determine if a connected device requires power and is PoE compatible.   How PoE switches work PoE switches integrate power sourcing equipment (PSE) functionality, enabling them to power a wide range of devices such as IP cameras, VoIP phones, and wireless access points. Key components of a PoE switch include: Detection Mechanism: Low-voltage signal: When a device is connected to a PoE port, the switch sends a low-voltage signal to detect if the device is PoE compatible. Only devices that respond appropriately (compliant with IEEE 802.3af/at standards) are powered on.   Power Classification: Power Requirements: The switch evaluates the power requirements of connected devices. For example, devices may be classified into different power classes, from Class 0 (default) to Class 4 (for PoE+ devices), to allocate the appropriate power.   Power Delivery: Controlled Powering: Once a device is verified as PoE-compatible and its power requirements are determined, the switch provides the necessary power. This controlled powering ensures efficient use of energy and device safety.   Situations where a PoE switch does not deliver power Non-PoE devices: Devices that do not support the PoE standard will not draw power from the PoE switch. A detection mechanism ensures that only PoE-compatible devices receive power, preventing damage to non-PoE devices. Power Budget Limitation: PoE switches have a maximum power budget that cannot be exceeded. For example, a switch with a power budget of 65W can power multiple devices, but if the cumulative power requirements exceed this budget, some devices may not receive power.   Extended Mode Feature: Some PoE switches have an extended mode setting, such as the SP5200-4PFE2FE PoE switch that allows power delivery over longer distances (up to 250 meters) while managing power distribution. In this mode, power distribution is strictly controlled to ensure that all devices within range receive adequate power.   Benefits of Selective Powering Energy Efficiency: By supplying power only to necessary devices, PoE switches help reduce overall energy consumption, thereby saving costs and reducing carbon footprint.   Security: The detection and classification process protects the switch and connected devices from potential damage caused by inappropriate power levels.   Network Flexibility: PoE technology allows for flexible placement of devices such as IP cameras and access points without the need for nearby power outlets, simplifying network installation and expansion.   PoE switches are designed to intelligently manage power delivery, ensuring that only compatible devices receive the power they need. This not only improves the efficiency and security of network deployment, but also provides flexibility and scalability for applications such as IP cameras, VoIP phones, wireless access points (WAPs), network switches and routers. By understanding the detection mechanism, power classification, and controlled power delivery of PoE technology, network administrators can make informed decisions to deploy PoE switches to optimize their network infrastructure.
    Read More
  • What are the latest trends in PoE technology?
    Dec 12, 2021
      The latest trends in Power over Ethernet (PoE) technology reflect advancements in power capacity, efficiency, and the expanding range of applications. These trends are shaping how PoE is used in both enterprise and industrial settings, driven by the growing demand for smart devices and IoT solutions. Here are some key trends in PoE technology:   1. Higher Power Delivery with PoE++ (IEEE 802.3bt) PoE++ Standard: The introduction of PoE++ (IEEE 802.3bt) enables power delivery of up to 100 watts per port, significantly higher than the 15.4 watts (PoE) and 30 watts (PoE+) of earlier standards. This is ideal for powering high-demand devices such as: --- 4K IP cameras with advanced features like PTZ (pan-tilt-zoom). --- LED lighting systems. --- High-performance wireless access points (Wi-Fi 6/6E). --- Digital signage, video conferencing systems, and other power-hungry devices. Impact: Higher power capabilities allow PoE to support a broader range of devices, including larger and more complex smart building systems and industrial equipment, expanding its application across different sectors.     2. PoE for Smart Buildings and IoT Smart Building Infrastructure: PoE is increasingly being integrated into smart building ecosystems, where a single Ethernet cable can power and network a variety of devices such as security cameras, lighting, HVAC systems, and sensors. This integration improves energy efficiency, reduces installation costs, and simplifies network management. IoT Devices: With more IoT devices deployed in offices and industrial environments, PoE is playing a crucial role in powering and connecting these devices, offering reliable power and data transmission over a single cable. Examples include smart thermostats, access control systems, and environmental sensors.     3. PoE in Wireless Technology Wi-Fi 6/6E Access Points: The latest Wi-Fi 6 and Wi-Fi 6E access points require more power to deliver higher throughput and coverage. PoE++ is ideal for supporting these high-performance wireless devices without needing separate power outlets, simplifying the deployment of dense Wi-Fi networks. 5G Small Cell Deployments: PoE is being used in the deployment of 5G small cells, which require power and data transmission. PoE simplifies the installation of small cells in urban areas or crowded environments by reducing the need for additional power infrastructure.     4. PoE Lighting PoE Lighting Systems: LED lighting powered by PoE is an emerging trend in smart building design. PoE allows for centralized control of lighting systems, enabling better energy efficiency, remote management, and integration with other smart systems like occupancy sensors. PoE lighting also eliminates the need for separate electrical wiring, making installation easier and more cost-effective. Integration with Building Automation: PoE lighting can be integrated into broader building automation systems, providing features like daylight harvesting, automated dimming, and energy monitoring.     5. PoE for Edge Computing and Industrial IoT Edge Computing Devices: As edge computing grows, PoE is being used to power and connect devices that process data closer to the source (e.g., cameras, sensors). This reduces latency and improves the performance of real-time applications like video analytics and industrial automation. Industrial PoE: In industrial environments, PoE is increasingly used for IP cameras, sensors, and automation equipment. PoE’s ability to provide reliable power in harsh conditions, combined with its simplicity, makes it an attractive option for smart manufacturing and industrial IoT (IIoT) deployments.     6. Advanced PoE Management and Efficiency Energy-Efficient PoE: There is a growing focus on energy efficiency in PoE switches and devices. Modern PoE switches often include features like power scheduling, where devices are powered down during off-hours to save energy, and dynamic power allocation, where power is distributed only when needed. Smart Power Management: Advanced PoE switches now offer intelligent power management features that monitor power usage, automatically prioritize critical devices, and provide remote management tools. This improves overall network reliability and energy consumption.     7. PoE and Sustainability Initiatives Green Building Certifications: With increasing attention to sustainability and energy efficiency, PoE-powered smart systems are helping organizations achieve certifications like LEED (Leadership in Energy and Environmental Design). PoE’s ability to reduce energy consumption and streamline infrastructure makes it attractive for sustainable building projects. Reducing Carbon Footprint: By combining power and data in a single cable, PoE reduces the need for extensive electrical wiring and power outlets, cutting down on material costs and labor, and contributing to lower carbon emissions during construction.     8. Increased Distance for PoE Networks PoE Extenders: PoE networks are typically limited to 100 meters (328 feet) in cable length. However, PoE extenders are increasingly used to extend the reach of PoE networks up to 500 meters (1640 feet) or more, allowing devices to be deployed over greater distances without losing power or data integrity.     9. PoE and Redundancy for Critical Applications Redundant Power Supply: To improve reliability, especially in mission-critical applications like surveillance, PoE switches now come with redundant power supply (RPS) features. This ensures that PoE devices, such as security cameras, remain operational even if the primary power source fails. Backup Power with PoE: Many organizations are combining PoE with uninterruptible power supplies (UPS) to ensure continuous power for essential devices during power outages, increasing network uptime and reliability.     Summary of Key Trends --- Higher power delivery with PoE++ (up to 100W per port) is expanding the range of devices that PoE can support. --- PoE is central to smart building infrastructure and IoT deployments, powering devices like sensors, lighting, and HVAC systems. --- Wi-Fi 6/6E access points and 5G small cells are increasingly powered by PoE, reducing the need for additional power infrastructure. --- PoE lighting is becoming more prevalent in smart building design, improving energy efficiency and control. --- Edge computing and industrial IoT devices are being powered by PoE to reduce latency and simplify installation. --- Advanced power management features in PoE switches are improving energy efficiency and network reliability. --- Sustainability initiatives are driving PoE adoption for reducing energy consumption and infrastructure costs.   These trends reflect PoE's growing role as a versatile, scalable, and energy-efficient solution for modern network infrastructure.    
    Read More
  • How do PoE switches handle data and power simultaneously?
    Oct 20, 2022
      PoE (Power over Ethernet) switches are designed to handle both data and power transmission simultaneously over the same Ethernet cable. Here’s a breakdown of how this is achieved:   1. Ethernet Cable Structure --- Standard Ethernet cables, like Cat5e, Cat6, or Cat6a, consist of eight copper wires twisted into four pairs. For standard data transmission, only two pairs (four wires) are needed. PoE technology takes advantage of the unused pairs to transmit power, or in some configurations, sends both power and data over the same pairs.   2. Power Injection PoE switches inject power into the Ethernet cable alongside the data signals. Depending on the PoE standard, the power is injected in one of two ways: --- Mode A (Phantom Powering): Power is transmitted along the same pairs that carry data (pins 1-2 and 3-6). --- Mode B (Spare Pair Powering): Power is transmitted on the unused pairs (pins 4-5 and 7-8) in 10/100 Mbps Ethernet. In both cases, the power and data signals are able to coexist without interference, thanks to the separation of their frequencies—power is transmitted as a low-frequency DC current, while data is transmitted as high-frequency signals.   3. Power and Data Separation at the Device --- At the receiving end (the powered device, or PD), a PoE splitter inside the device separates the power from the data. The Ethernet controller in the device handles the data transmission, while the power supply circuit uses the DC voltage from the Ethernet cable to power the device.   4. Negotiation (Power Classification) --- PoE switches use a process called power classification to detect whether a connected device is PoE-compatible and determine how much power it needs. This is done using a handshake protocol known as LLDP (Link Layer Discovery Protocol) or a simpler detection mechanism where the switch sends a small voltage through the cable to identify the device's power requirements. --- Once the power needs are identified, the switch adjusts the power output accordingly, ensuring the appropriate amount of power is supplied without disrupting data flow.   5. PoE Standards Different PoE standards allow for varying amounts of power to be delivered: --- IEEE 802.3af (PoE): Up to 15.4W per port. --- IEEE 802.3at (PoE+): Up to 25.5W per port. --- IEEE 802.3bt (PoE++): Up to 60W (Type 3) or 100W (Type 4) per port.   6. Power Budget Management --- A PoE switch manages its total power budget, distributing available power to all connected devices. It monitors how much power each device is drawing and dynamically adjusts to ensure all connected devices receive the power they need while maintaining data transmission.   7. Data Integrity --- PoE switches are designed to maintain data integrity, ensuring that power transmission doesn’t interfere with data signals. This is achieved by using precise filtering techniques and voltage regulation to prevent power-related noise from affecting data communication.     In summary, PoE switches use intelligent power management and frequency separation techniques to transmit data and power simultaneously over the same Ethernet cable, ensuring efficient, reliable operation for powered devices without data disruption.    
    Read More
  • What is a Gigabit PoE switch?
    Nov 18, 2023
      A Gigabit PoE switch is a type of network switch that supports Gigabit Ethernet speeds (1 Gbps per port) and provides Power over Ethernet (PoE) functionality. This means it can transmit both data and electrical power over the same Ethernet cable to compatible devices, such as IP cameras, wireless access points, VoIP phones, and other network devices.   Here’s a breakdown of its key features: 1.Gigabit Ethernet: Each port on the switch supports speeds up to 1,000 Mbps, which allows for fast data transfer rates, suitable for high-bandwidth applications like video streaming, cloud computing, and large data transfers. 2.Power over Ethernet (PoE): PoE technology enables the switch to deliver electrical power over Ethernet cables to connected devices. This eliminates the need for separate power supplies and wiring, simplifying installation, particularly for devices located in areas without easy access to power outlets. 3.Efficiency and Simplicity: By combining data and power transmission into one, Gigabit PoE switches reduce cabling complexity and infrastructure costs, making them ideal for IP surveillance systems, smart buildings, IoT deployments, and other business or industrial applications.     Overall, a Gigabit PoE switch is a versatile and efficient solution for powering and connecting network devices in environments where speed, reliability, and simplified deployment are essential.    
    Read More
  • What is PoE for wireless backhaul?
    Dec 18, 2023
      PoE for wireless backhaul refers to the use of Power over Ethernet (PoE) technology to supply both power and data connectivity to wireless backhaul equipment through a single Ethernet cable.   Key Concepts: PoE (Power over Ethernet): PoE technology allows Ethernet cables to carry both electrical power and data. This is commonly used for devices like IP cameras, VoIP phones, and wireless access points, where both power and data transmission are needed, but running separate power lines would be inconvenient or expensive. Wireless Backhaul: Wireless backhaul refers to the process of transmitting data from one network location to another, typically over long distances, using wireless communication. It is often used in telecommunications to connect remote cell towers, wireless access points, or other network nodes to the core network.   How PoE is Used in Wireless Backhaul: --- When PoE is applied to wireless backhaul, it simplifies installation by allowing power to be delivered directly through the Ethernet cable to the wireless backhaul device (such as a point-to-point or point-to-multipoint wireless radio). This eliminates the need for a separate power source, making the deployment more efficient and cost-effective.     Benefits: Simplified Installation: Only one cable is required for both power and data, reducing the complexity of network infrastructure. Cost Savings: Reduces the need for additional power cabling or separate power sources. Flexibility: Wireless backhaul devices can be placed in hard-to-reach areas, such as rooftops or towers, where power outlets might not be available.     PoE is often used in applications like rural broadband connectivity, urban wireless coverage expansion, and in scenarios where physical infrastructure is difficult to maintain.    
    Read More
  • Why is PoE Voltage So High?
    Jan 10, 2025
      Power over Ethernet (PoE) technology has transformed how networks are deployed by allowing devices to receive both power and data through a single Ethernet cable. One question often raised is: why does PoE use such high voltage levels compared to traditional low-voltage systems?    Understanding PoE Voltage Levels   PoE technology is designed to supply power to various network devices, such as IP cameras, wireless access points, and VoIP phones, through Ethernet cables. Depending on the specific PoE standard, the voltage provided by PoE switches ranges between 44V and 57V, with the most common level being around 48V. This is significantly higher than the typical 12V or 24V used in other low-voltage systems.   But why exactly is the PoE voltage so high? The answer lies in a combination of factors, including power efficiency, cable length, and compatibility with different devices. 1. High Voltage Reduces Power Loss   One of the primary reasons for using higher voltage in PoE systems is to minimize power loss over long cable runs. Electrical power loss occurs due to the resistance of the cable, which is proportional to the square of the current. By increasing the voltage and reducing the current, PoE systems can transmit power more efficiently over distances up to 100 meters (328 feet) without significant energy loss.   For example, consider a network using Gigabit PoE switches to power multiple high-wattage devices. Lower voltage would result in higher current, leading to excessive power dissipation as heat and reduced overall efficiency. With higher voltage, the current remains low, keeping power loss manageable and ensuring sufficient power delivery to all connected devices. 2. Ensuring Device Compatibility and Safety   PoE systems are designed to power a wide range of devices with varying power requirements. Higher voltage provides greater flexibility in meeting the needs of different devices, from low-power VoIP phones to high-power outdoor security cameras. Using a standard voltage of around 48V ensures compatibility across all PoE devices, regardless of power class.   Moreover, despite the high voltage, PoE technology is engineered with safety in mind. Modern managed PoE switches incorporate sophisticated detection mechanisms to ensure that only PoE-compatible devices receive power. Before supplying voltage, the switch performs a handshake with the connected device to determine if it can safely accept PoE power. If a non-PoE device is connected, the switch withholds power, protecting both the device and the network infrastructure. 3. Supporting Higher Power Devices   As network devices become more advanced, their power requirements are increasing. The latest PoE standard, IEEE 802.3bt, known as PoE++, can deliver up to 90W per port, enabling it to power more demanding devices like smart lighting systems, interactive kiosks, and point-of-sale terminals. High voltage is essential to supply this level of power without exceeding the current capacity of standard Ethernet cables.   For businesses deploying such high-power devices, using high-quality industrial PoE switches is critical. These switches are specifically designed to handle the increased power demands while maintaining stable data transmission and minimizing heat generation. Safety Concerns with High PoE Voltage   Although PoE uses higher voltage than traditional low-voltage systems, it is still considered safe for both installation and operation. The maximum voltage used by PoE systems, 57V, is below the 60V safety threshold defined by international electrical standards. This means that PoE installations do not require special high-voltage handling procedures, making them a convenient choice for network deployments in various environments.   Furthermore, Ethernet cables used in PoE networks are well-insulated and shielded, reducing the risk of accidental contact with live conductors. Combined with the built-in safety features of PoE switches, this ensures that PoE systems remain safe even in large-scale deployments.Common Applications Requiring High PoE Voltage   High voltage PoE systems are widely used in industries where devices need to be powered over long distances or where high-power devices are required. Key applications include:       Surveillance Systems: PoE-powered IP cameras, especially those with features like night vision and pan-tilt-zoom, require higher power levels to function effectively.     Wireless Networks: High-performance wireless access points deployed in enterprise environments often need PoE++ to deliver both power and high-speed data.     Smart Buildings: PoE technology is increasingly used to power smart lighting, HVAC controllers, and other IoT devices in modern smart buildings.   How to Choose the Right PoE Switch for Your Needs?   When selecting a PoE switch, businesses should evaluate the total power budget, port requirements, and supported PoE standard. For long-distance power transmission or high-power devices, Gigabit PoE switches with PoE++ support are recommended. Advanced management features also provide better power control and enhance network reliability. Why Choose BENCHU GROUP for PoE Solutions?   As a trusted supplier of power solutions, BENCHU GROUP offers a comprehensive range of PoE switches tailored to various business needs. Whether you require a compact switch for an office or a high-power industrial model, we have you covered.   Key features include:       High power capacity for PoE, PoE+, and PoE++ devices     Built-in safety mechanisms for secure power delivery     Durability for demanding environments     Energy efficiency to reduce costs   Contact us today to partner with BENCHU GROUP to build a smarter, more reliable network!
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact Us